Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; : e202400363, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470083

RESUMO

Reactions between sodium tetrachloropalladate and 2- (or 4-) substituted 4-phenyl-3-thiosemicarbazone ligands (HLR), with various electron-donating and electron-withdrawing substituents (R = OCH3, NO2, and Cl), afford square-planar complexes of the general formula [Pd(LR)2]. Ground-state geometry optimization and the vibrational analysis of cis- and trans-isomers of the complexes were carried out to get an insight into the stereochemistry of the complexes. Natural bond orbital analysis was used to analyze how the nature of the substituent affects the natural charge of the metal center, the type of hybridization, and the strength of the M-N and M-S bonds. Using spectrophotometry, the stability of the complexes, and their DNA binding abilities were assessed. The Pd(II) complexes showed moderate cytotoxicity against MCF-7 and Caco-2 cell lines, two of the assessed malignant cell lines, resulting in all known cell death types, including early apoptotic bodies and late apoptotic vacuoles as well as evident necrotic bodies.

2.
Int J Pharm ; 654: 123969, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38442795

RESUMO

The current study used the precipitation method to prepare pure calcium hydroxyapatite (HA) and cerium-substituted hydroxyapatite (Ce-HA) nanoparticles, where cerium ions were exchanged into the HA structure at different concentrations ranging from 3 to 7 wt%. X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) surface area measurements, and zeta potential were used to examine the structural characteristics of the nanoparticles. Additionally, the antibacterial and antifungal effects of the produced materials on Gram-positive, Gram-negative, and fungal bacterial species were studied. Nanoparticles with cerium doping showed effective antibacterial and antifungal properties. All samples were tested for bioactivity in simulated body fluid (SBF), and the formation of an apatite layer on their surfaces was highlighted using SEM in conjunction with energy-dispersive X-rays (EDX).Doxorubicin (DOX) release from Ce-HA nanoparticles and pure HA was tested in phosphate-buffered saline (PBS) for up to 28 days. Both nanoparticles were able to release the drug while still being semi-fully loaded. Similarly, the cytotoxic effect of all produced samples on the MG-63 cell line was evaluated, and all samples showed good cytocompatibility. The cytotoxic effect of doxorubicin-loaded nanoparticles showed promising anticancer activity against bone cancer cells, especially samples with high cerium content. The resulting nanoparticles show excellent promising ability for the delivery of doxorubicin to bone cancer with the capacity for bone regeneration.


Assuntos
Neoplasias Ósseas , Cério , Nanopartículas , Humanos , Durapatita/química , Antifúngicos , Nanopartículas/química , Regeneração Óssea , Doxorrubicina/farmacologia , Antibacterianos , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Eur J Med Chem ; 269: 116279, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38460271

RESUMO

In the current study, two series of novel thiazolidin-4-one benzenesulfonamide arylidene hybrids 9a-l and 10a-f were designed, synthesized and tested in vitro for their PPARÉ£ agonistic activity. The phenethyl thiazolidin-4-one sulphonamide 9l showed the highest PPARÉ£ activation % by 41.7%. Whereas, the 3-methoxy- and 4-methyl-4-benzyloxy thiazolidin-4-one sulphonamides 9i, and 9k revealed moderate PPARÉ£ activation % of 31.7, and 32.8%, respectively, in addition, the 3-methoxy-3-benzyloxy thiazolidin-4-one sulphonamide 10d showed PPARÉ£ activation % of 33.7% compared to pioglitazone. Compounds 9b, 9i, 9k, 9l, and 10d revealed higher selectivity to PPARÉ£ over the PPARδ, and PPARα isoforms. An immunohistochemical study was performed in HepG-2 cells to confirm the PPARÉ£ protein expression for the most active compounds. Compounds 9i, 9k, and 10d showed higher PPARÉ£ expression than that of pioglitazone. Pharmacological studies were also performed to determine the anti-diabetic activity in rats at a dose of 36 mg/kg, and it was revealed that compounds 9i and 10d improved insulin secretion as well as anti-diabetic effects. The 3-methoxy-4-benzyloxy thiazolidin-4-one sulphonamide 9i showed a better anti-diabetic activity than pioglitazone. Moreover, it showed a rise in blood insulin by 4-folds and C-peptide levels by 48.8%, as well as improved insulin sensitivity. Moreover, compound 9i improved diabetic complications as evidenced by decreasing liver serum enzymes, restoration of total protein and kidney functions. Besides, it combated oxidative stress status and exerted anti-hyperlipidemic effect. Compound 9i showed a superior activity by normalizing some parameters and amelioration of pancreatic, hepatic, and renal histopathological alterations caused by STZ-induction of diabetes. Molecular docking studies, molecular dynamic simulations, and protein ligand interaction analysis were also performed for the newly synthesized compounds to investigate their predicted binding pattern and energies in PPARÉ£ binding site.


Assuntos
60532 , Diabetes Mellitus Tipo 2 , Ratos , Animais , Pioglitazona/farmacologia , PPAR gama/metabolismo , Simulação de Acoplamento Molecular , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/farmacologia
4.
Dalton Trans ; 53(11): 5073-5083, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38375910

RESUMO

A series of Pd(II) complexes of the general formula [PdX(NNS)] (X = Cl, Br, I, NCS and phenyl-tetrazole-thiolato; NNS = 2-quinolinecarboxyaldehyde-N4-phenylthiosemicarbazone) was tested against four malignant cell lines for their antiproliferative properties and the outcomes were compared to those seen in normal mouse splenocytes. Various auxiliary ligands were substituted in order to investigate the impact of the character of the ligand on the cytotoxicity of this class of Pd(II) complexes. The iodo complex was the most cytotoxic compound towards the Caco-2 cell line in this study. The improved apoptosis and necrosis cell modes were in accordance with the fragmentation results of DNA, which revealed increased fragmentation terminals, especially in isothiocyanate and tetrazole-thiolato complexes. After 24 hours, at half the IC50 of each complex, the complex-treated cells exhibited considerable genotoxicity when compared to the corresponding non-treated control especially in the case of isothiocyanate and tetrazole-thiolato complexes.


Assuntos
Antineoplásicos , Complexos de Coordenação , Tiossemicarbazonas , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Tiossemicarbazonas/farmacologia , Ligantes , Células CACO-2 , Antineoplásicos/farmacologia , Apoptose , Tetrazóis , Isotiocianatos/farmacologia , Complexos de Coordenação/farmacologia
5.
Int J Biol Macromol ; 261(Pt 1): 129700, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278395

RESUMO

The exceptional antioxidant properties of beetroot (BR) and the cancer antiproliferative effects of chitosan nanoparticles (CS NP) have led to the synthesis of a BR@CS nanocomposite (NC) in this study. The novel BR@CS NC was applied to human epithelial colorectal adenocarcinoma (Caco-2), human epithelial ductal breast carcinoma (T-47D), and human epithelial lung carcinoma (A549) cells. SEM characterization of CS NP revealed a variety of particle shapes ranging from 20 to 58 nm in diameter. UV-VIS analysis confirmed the formation of the BR@CS NC, while FTIR analysis demonstrated strong hydrogen bonds between CS NP and BR. These bonds reduced the positive surface charge of CS NP, as indicated by zeta potential analysis. When applied to cancer cell lines at a concentration of 250 µg/mL, the BR@CS NC successfully eradicated 89 % of A549, 88 % of T-47D, and 83 % of Caco-2 cell lines. The cell death mode exhibited extensive, apoptotic, and massive necrotic changes in all cell lines treated with BR@CS NC. Caspase 3 (CasP3) and P53 levels were elevated in BR@CS NC-treated cells. This study merges BR's antioxidant and anti-inflammatory properties with the antiangiogenic mechanism and inhibition of tumors by CS NP, resulting in a unique and innovative strategy for cancer treatment.


Assuntos
Quitosana , Nanocompostos , Nanopartículas , Neoplasias , Humanos , Quitosana/química , Células CACO-2 , Antioxidantes/farmacologia , Nanopartículas/química , Nanocompostos/química
6.
J Enzyme Inhib Med Chem ; 38(1): 2242714, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592917

RESUMO

A new wave of dual Topo I/II inhibitors was designed and synthesised via the hybridisation of spirooxindoles and pyrimidines. In situ selenium nanoparticles (SeNPs) for some derivatives were synthesised. The targets and the SeNP derivatives were examined for their cytotoxicity towards five cancer cell lines. The inhibitory potencies of the best members against Topo I and Topo II were also assayed besides their DNA intercalation abilities. Compound 7d NPs exhibited the best inhibition against Topo I and Topo II enzymes with IC50 of 0.042 and 1.172 µM, respectively. The ability of compound 7d NPs to arrest the cell cycle and induce apoptosis was investigated. It arrested the cell cycle in the A549 cell at the S phase and prompted apoptosis by 41.02% vs. 23.81% in the control. In silico studies were then performed to study the possible binding interactions between the designed members and the target proteins.


A new wave of dual Topo I/II inhibitors was designed and synthesised via the hybridisation of spirooxindoles and pyrimidines.In situ selenium nanoparticles (SeNPs) for some derivatives were synthesised.Cytotoxicity, Topo I and Topo II inhibitory assays, and DNA intercalation abilities were evaluated.Compound 7d NPs showed the best Topo I and Topo II inhibition.Cell cycle arrest, apoptosis induction, and molecular docking studies were performed.


Assuntos
Nanopartículas , Selênio , Selênio/farmacologia , Substâncias Intercalantes/farmacologia , Ciclo Celular , DNA Topoisomerases Tipo II , DNA
7.
Int Arch Occup Environ Health ; 96(2): 313-329, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36287252

RESUMO

OBJECTIVE: Workers in secondary aluminum production plants are occupationally exposed to polycyclic aromatic hydrocarbons (PAHs). We aimed to monitor the concentrations of PAHs in air and in serum of workers at two secondary aluminum production plants. We also investigated the potential risk of lung cancer development among PAHs exposed workers with emphasis on the role of A1AT mutation and APEX1 gene polymorphisms. METHODS: This study included 177 workers from administrative departments and production lines. Blood samples were obtained for estimation of benzo(a)pyrene diol epoxide albumin adduct (BPDE-Alb adduct), anti-Cyclin-B1 marker (CCNB1) and squamous cell carcinoma antigen (SCCAg). Genes' polymorphism for human apurinic/apyrimidinic endonuclease (APEX1) and alpha-1-anti-trypsin (A1AT) gene mutation were detected. RESULTS: There was a significant increase in the level of BPDE-Alb adduct among exposed workers in comparison to non-exposed group. Moreover, 41.67% of exposed workers in El Tebbin had BPDE-Alb adduct level ≥ 15 ng/ml versus 29.6% of workers in Helwan factory. There was a significant increase in tumor markers (SCCAg and CCNB1) among workers whose BPDE-Alb adduct ≥ 15 ng/ml. There was a significant increase in the level of BPDE-Alb adducts in exposed workers carrying homozygous APEX1 genotype Glu/Glu. Furthermore, exposed workers with the Glu/Glu genotype had high tumor markers levels. There was a significant increase in levels of BPDE-Alb adducts in workers carrying A1AT mutant allele. Moreover, workers with mutant A1AT genotype had significantly high tumor markers (SCCAg and CCNB1) levels. CONCLUSION: Therefore, we conclude that aluminum workers may be at a potential risk of lung cancer development due to PAHs exposure. Although PAHs concentrations in air were within the permissible limits, yet evidence of DNA damage was present as expressed by high BPDE-albumin adduct level in exposed workers. Also, elevation of tumor markers (SCCAg and CCNB1) in exposed workers points to the importance of periodic biological monitoring of such workers to protect them from cancer risk.


Assuntos
Neoplasias Pulmonares , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Humanos , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/análise , Adutos de DNA , Exposição Ocupacional/análise , Alumínio , Albuminas/genética , Reparo do DNA , Biomarcadores Tumorais
8.
Life Sci ; 315: 121320, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36574946

RESUMO

AIMS: 5-Fluorouracil (5-FU) represents the cornerstone for colorectal cancer therapy. However, resistance to its action is a major hindrance. This study aimed to investigate the effectiveness of suppressing the activity of PI3K/Akt/mTOR signaling pathway on the chemosensitivity of colorectal cancer cells to 5-FU, as well as to delineate the possible underlying cellular mechanisms and the expected modulation in the expression of specific ABC drug transporters. MAIN METHODS: HCT116 and Caco-2 cells were incubated with 5-FU, LY294002, or PI-103 individually or in combination. Cell viability was monitored using MTT assay. The expression of a panel of drug transporters was evaluated by RT-PCR. Immunofluorescence staining was applied to evaluate the expression pattern of phospho-AKT, phospho-mTOR, and ABGG2. HPLC evaluated the enhancement in the 5-FU cellular uptake. Cell apoptosis was detected by flow cytometry, and cell morphological changes following treatment were inspected under a fluorescence microscope. Additionally, the migration ability of cells following our suggested treatment combination was examined by wound healing assay. KEY FINDINGS: The results reveal a notable enhancement in the cytotoxicity of a low dose of 5-FU when combined with a PI3K inhibitor (LY294002 or PI-103). This enhancement was influenced by the significant reduction in the expression of p-AKT and p-mTOR and was also mediated by a significant suppression in the expression of ABCG2 and ABCC5. Consequently, we detected an increase in the cellular uptake and concentration of 5-FU in cells treated with this combination rather than a single 5-FU treatment. Our Suggested combination treatment also induced cell apoptosis and reduced the migration ability of cells. SIGNIFICANCE: Our data provide evidence that survival signaling pathways represent distinctive targets for the enhancement of chemotherapeutic sensitivity. The antitumor efficacy of 5-FU is enhanced when combined with a PI3K inhibitor, and this effect was mediated by alterations in the expression of specific drug transporters.


Assuntos
Neoplasias Colorretais , Fluoruracila , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células CACO-2 , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Transportadores de Cassetes de Ligação de ATP , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Proliferação de Células
9.
Arch Pharm (Weinheim) ; 356(2): e2200341, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36398495

RESUMO

Two series of diaryl urea derivatives, 6a-k and 7a-n, were synthesized. All the newly synthesized compounds were tested against the NCI (US) cancer cell lines via SRB assay. The p-chloro-m-trifluoromethyl phenyl derivatives 6e-g and 7e-g showed the most potent cytotoxic activity with a GI50 value range of 1.2-15.9 µM. Furthermore, the p-fluorobenzyloxy diaryl urea derivative 7g revealed the most potent cytotoxicity against eight cancer cell lines in the MTT assay with IC50 values below 5 µM. Compounds 6a-k and 7a-n were tested for their vascular endothelial growth factor receptor-2 (VEGFR-2) kinase inhibitory activities. The p-chloro-m-trifluoromethyl diaryl urea benzyloxy derivatives 7e-i and the p-methoxydiaryl urea benzyloxy derivatives 7k, 7l, and 7n were found to be the most active compounds as VEGFR-2 inhibitors in the benzyloxy series 7, with an IC50 range of 0.09-4.15 µM. In the 2-oxo-2-phenylethoxy series 6, compounds 6e-g and 6i were reported with IC50 values of 0.94, 0.54, 2.71, and 4.81 µM, respectively. Moreover, compounds 7e and 7g induced apoptosis, causing cell cycle arrest in the G2/M phase. In addition, 7g showed an antimigratory effect in A-375 cells and inhibited the VEGFR-2 expression in an immunohistofluorescence study. Molecular docking simulations on VEGFR-2 as well as ADME properties prediction were also performed.


Assuntos
Antineoplásicos , Ureia , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Ureia/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular/farmacologia , Proliferação de Células , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais
10.
RSC Adv ; 12(47): 30829-30837, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36349156

RESUMO

The reaction between 1H-benzimidazol-2-ylmethyl-(N-aryl)amine derivatives (LR) and [ReBr(CO)5] afforded octahedral Re(i) complexes of the general formula of [ReBr(CO)3LR] (R = 4-Cl and 4-COOCH3). The Re(i) complexes were screened for their potential cytotoxicity against three malignant cell lines and one normal cell line of different origins. The solvatochromic characteristics of the complexes were examined by UV/vis. spectroscopy with the aid of time-dependent density functional theory calculations. Strong autofluorescence emission can be seen in the two Re(i) complexes between 460 and 488 nm. They appeared to accumulate inside intercellular connections and surrounding cellular membranes. The substances gathered also, along the cell membrane, waiting for their entry. The mode of cell death staining and the DNA fragmentation analysis revealed that the 4-Cl complex showed increased apoptotic changes in the MCF-7, and the Caco-2 cell line, while the HepG2 cell line showed little apoptotic changes.

11.
Int J Biol Macromol ; 209(Pt B): 2097-2108, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35504415

RESUMO

Fabrication of scaffolds for nerve regeneration is one of the most challenging topics in regenerative medicine at the moment, which is also interlinked with the development of biocompatible substrates for cells growth. This work is targeted towards the development of green biomaterial composite scaffolds for nerve cell culture applications. Hybrid scaffolds of hydroxyethyl cellulose/glycine (HEC/Gly) composite doped with different concentrations of green ruthenium oxide (RuO2) were synthesized and characterized via a combination of different techniques. X-rays diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed a crystalline nature for all the samples with noticeable decrease in the peak intensity of the fabricated scaffolds as compared to that for pure glycine. Fourier transform infrared spectroscopy (FTIR) tests revealed an increase in the vibrational bands of the synthesized RuO2 containing scaffolds which are related to the functional groups of the natural plant extract (Aspalathuslinearis) used for RuO2 nanoparticles (NPs) synthesis. Scanning electron microscopy (SEM) results revealed a 3D porous structure of the scaffolds with variant features attributed to the concentration of RuO2 NPs in the scaffold. The compressive test results recorded an enhancement in mechanical properties of the fabricated scaffolds (up to 8.55 MPa), proportionally correlated to increasing the RuO2 NPs concentration in HEC/Gly composite scaffold. Our biocompatibility tests revealed that the composite scaffolds doped with 1 and 2 ml of RuO2 demonstrated the highest proliferation percentages (152.2 and 135.6%) compared to control. Finally, the SEM analyses confirmed the impressive cells attachments and differentiation onto the scaffold surfaces as evidenced by the presence of many neuron-like cells with apparent cell bodies and possessing few short neurite-like processes. The presence of RuO2 and glycine was due to their extraordinary biocompatibility due to their cytoprotective and regenerative effects. Therefore, we conclude that these scaffolds are promising for accommodation and growth of neural-like cells.


Assuntos
Glicina , Compostos de Rutênio/química , Tecidos Suporte , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Celulose/química , Celulose/farmacologia , Glicina/farmacologia , Neurônios , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual , Tecidos Suporte/química
12.
Bioorg Chem ; 126: 105883, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35636123

RESUMO

In the current study, series of 2-arylbenzimidazole-thiopyrimidine and -thioquinazolin-4(3H)-ones conjugates 12a-d, 13a,b and 14a-l have been synthesized. All the synthesized compounds were tested in vitro for their anticancer activities against a panel of cancer cell lines at NCI - US and their growth inhibition (GI) % were determined at 10 µM. Compounds 14c and 14g-i were selected to be screened at the five dose assay and were found to exhibit GI50 values 1.1-30.0 µM. The benzimidazole-quinazolinone derivative 14c, in particular, showed potent anticancer activity against the tested cancer cell lines (GI50 of 1.3-4.2 µM). In addition, compounds 12a,b, 13a, 14a-e, 14g, 14i and 14j were selected to be tested against some cancer cell lines using MTT assay and the benzimidazole-quinazolinone 14g was found to have potent anticancer activities against melanoma (Mel-501 and A-375), breast (MCF-7), colon (HCT-116), prostate (PC-3), lung (A-549) and pancreas (Paca-2) cancer cell lines reporting IC50 values ranging between 0.1 and 6.2 µM. Moreover, the synthesized hybrids were tested in vitro on kinases; BRAF (wt), BRAF (V600E), CRAF and VEGFR-2. The benzimidazole-quinazolinone derivatives 14f,g revealed potent RAF kinases inhibitory activities on BRAF (wt), BRAF (V600E) and CRAF showing IC50 values 0.002-0.1 µM, whereas, the benzimidazole-quinazolinone derivatives 14i and 14k showed moderate VEGFR-2 inhibitory activity (IC50 = 20.60 and 6.14 µM, respectively). Moreover, the representative compounds 14g and 14i caused cell cycle arrest of A-375 melanoma cell line at G2/M phase and were found to induce late apoptosis. CRAF in the DFG-out inactive conformation homology modeling was first reported in this study and molecular docking studies on BRAF, CRAF and VEGFR-2 were also performed to investigate the binding modes of the target compounds and their interactions with the key amino acids; BRAF (Glu500, Cys531 and Asp593), CRAF (Glu393, Cys424 and Asp486) and VEGFR-2 (Glu885, Cys919 and Asp1046).


Assuntos
Antineoplásicos , Melanoma , Antineoplásicos/química , Benzimidazóis/farmacologia , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Quinazolinonas/farmacologia , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
13.
Environ Toxicol ; 37(2): 212-223, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34655286

RESUMO

BACKGROUND: α-Solanine is a natural toxic glycoalkaloid produced in some species of the Solanaceae family with antiproliferative activity in various cancers. OBJECTIVE: This study aimed to investigate the effect of α-solanine on the oxidative stress status in human hepatocellular carcinoma HepG2 cells and to evaluate its influence on microRNAs (miRNAs) associated with oxidative stress and NF-κB regulation. METHODS: The prooxidant effect of α-solanine was tested by the decay rate of the fluorescent probe, ß-phycoerythrin, and by measuring malondialdehyde, reduced Glutathione, catalase, and superoxide dismutase following treatment of HepG2 cells with low doses of α-solanine. Immunocytochemical techniques were used to detect mitochondrial membrane potential (ΔΨm) and NF-κB protein. The gene expression of NF-κB and miRNAs was evaluated by real-time PCR. RESULTS: α-Solanine is a prooxidant that causes a rapid decay in the fluorescence intensity of ß-phycoerythrin. It induces oxidative stress-related alterations such as increased lipid peroxidation and reduced antioxidant markers. Oxidative stress induced by α-solanine was mediated by decreased ΔΨm, increased NF-κB expression, upregulation of miRNAs that control oxidative stress by regulating the NF-κB pathway, and downregulation of oncogenic miRNAs that inhibit the NF-κB pathway. CONCLUSION: α-Solanine-induced oxidative stress is mediated by alterations in the NF-κB pathway with a detected crosstalk between α-solanine treatment and the expression of oxidative stress-responsive miRNAs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Estresse Oxidativo , Apoptose , Carcinoma Hepatocelular/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , MicroRNAs/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Solanina
14.
Carbohydr Polym ; 268: 118230, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34127217

RESUMO

Pectin is widely used in food and pharmaceutical industries. However, due to its polysaccharide nature it lacks antimicrobial activity. In the current work, new pectin derivatives with interesting optical and antimicrobial properties were prepared via supramolecular chemistry utilizing Fe- or Cu-terpyridine (Tpy-Fe and Tpy-Cu) motifs. To proof derivatization of pectin, ultraviolet-visible spectroscopy (UV-Vis) and Fourier Transform infrared (FTIR) were used. In addition, the prepared pectin derivatives retained the known emulsification activity of the non-modified sugar beet pectin as seen from the particle size analysis of oil-in-water emulsions. The prepared derivatives showed antibacterial activity toward selected Gram-positive and Gram-negative bacteria. In addition, cytotoxicity test showed that the Tpy-Fe-pectin derivative was non-toxic to cells of human hepatocarcinoma, breast adenocarcinoma MCF7, and colorectal carcinoma cells at concentrations up to 100 µg/ml, while Tpy-Cu-pectin had moderate toxicity toward the aforementioned cells at the same concentration levels. The prepared derivatives could have potential applications in emulsions with antibacterial activity.


Assuntos
Antibacterianos/farmacologia , Complexos de Coordenação/farmacologia , Emulsificantes/farmacologia , Pectinas/farmacologia , Piridinas/farmacologia , Antibacterianos/síntese química , Antibacterianos/toxicidade , Beta vulgaris/química , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , Cobre/química , Cobre/toxicidade , Emulsificantes/síntese química , Emulsificantes/toxicidade , Escherichia coli/efeitos dos fármacos , Humanos , Ferro/química , Ferro/toxicidade , Ligantes , Testes de Sensibilidade Microbiana , Pectinas/síntese química , Pectinas/toxicidade , Piridinas/síntese química , Piridinas/toxicidade , Staphylococcus aureus/efeitos dos fármacos
15.
Appl Biochem Biotechnol ; 192(4): 1208-1223, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32710170

RESUMO

Indole-3-carbinol (I3C) is a naturally occurring glucosinolate found in Brassica vegetables that is usually converted in gastric acidic environment to the efficient metabolite 3,3'-diindolylmethane (DIM). Both indoles (I3C and DIM) are known chemopreventive agents for various cancers including breast cancer. This study aimed to investigate the influence of both indoles on the tumor suppressor miRNAs (let-7a-e, miR-15a, miR-16, miR-17-5p, miR-19a, and miR-20a) and oncomiRs (miR-181a, miR-181b, miR-210, miR-221, and miR-106a), which are controlling the cell cycle key regulators: cyclin-dependent kinases (CDKs), CDK inhibitor p27Kip1, and cyclin D1. Our results indicated that both indoles generally elevated the expression of the tumor suppressor miRNAs let-7a-e, miR-19a, miR-17-5p, and miR-20a and decreased the expression of the oncomiR list. Both indoles were able to significantly suppress the expression of CDK4 and CDK6 as well as the apoptotic markers Bcl-2 and survivin. Both indoles decreased cyclin-D1 protein, where I3C decreased cytoplasmic and nuclear cyclin-D1 significantly. Cytoplasmic and nuclear P27Kip1 showed overexpression following treatment with I3C higher than that detected following DIM treatment. This study provides a mechanistic elucidation of the previously reported cell cycle arrest by I3C and DIM in breast cancer cells suggesting that this effect could be through modulation of miRNAs expression that, in turn, regulates the genetic network controlling the G1/S phase in cell cycle progression.


Assuntos
Neoplasias da Mama/patologia , Fase G1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indóis/farmacologia , MicroRNAs/genética , Fase S/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Fase G1/efeitos dos fármacos , Humanos , Fase S/efeitos dos fármacos
16.
Cytokine ; 125: 154790, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400636

RESUMO

BACKGROUND: TNFRSF13B, TACI, is a member of the TNF receptor superfamily; it plays a key role in cancer cell proliferation and progression. METHOD: Influence of silencing of human cytokine receptors on cell viability was screened by Luminescent Cell Viability Assay, after transfection of the siRNA library to find the maximum cell death superhits in both triple-negative MDA-MB-231 and double-positive MCF7 breast cells. The mode of cell death was investigated by dual DNA fluorescence staining. The expression of mRNAs of TACI, BAFF, BAFF-R, and APRIL was explored by qPCR. Immunocytofluorescence analysis was used to evaluate changes in TACI, Bcl-2, TNFR2, cyclin-D2, and PCNA. NF-kB p65, cell cycle, and necrosis/apoptosis (late and early) were analyzed by flow cytometry. RESULTS: TACI is the most potent cytotoxic superhit resulted from high-throughput screening of the siRNA library, in both types of cells. Our findings indicated that silencing receptor TACI in both types of breast cancer cells led to significant cell death, after different intervals from siRNA transfection. Cell death mediators (TNFR2, Bcl-2, and NF-κB) were significantly decreased after TACI silencing. The key factors for cell division (Cyclin-D2 and PCNA) were significantly increased in silenced cells of both types but the cell cycle was arrested before the completion of mitosis. Expression of BAFF, BAFF-R and APRIL mRNA in TACI-silenced cells showed significant upregulation in MDA-MB-231 cells, while only BAFF-R and APRIL showed significant downregulation in MCF7 cells. CONCLUSION: TACI silencing can be a new and promising therapeutic target for mesenchymal-stem like triple-negative breast cancer subtype.


Assuntos
Apoptose/genética , Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Fator Ativador de Células B/genética , Fator Ativador de Células B/metabolismo , Receptor do Fator Ativador de Células B/genética , Receptor do Fator Ativador de Células B/metabolismo , Sobrevivência Celular/genética , Ciclina D2/genética , Ciclina D2/metabolismo , Regulação para Baixo , Feminino , Citometria de Fluxo , Imunofluorescência , Inativação Gênica , Ensaios de Triagem em Larga Escala , Humanos , Células MCF-7 , NF-kappa B/genética , NF-kappa B/metabolismo , Necrose/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Neoplasias de Mama Triplo Negativas/genética , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Regulação para Cima
17.
Asian Pac J Cancer Prev ; 20(8): 2303-2310, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31450899

RESUMO

Background: There is no doubt that hyperthermia is one of the powerful radiosensitizers. Finding a proper mechanism working in hyperthermia/radiation combination is still pronounced challenge. Objectives: This study is focusing on the anti-cancer activities (anti-proliferative, anti-angiogenic and antiapoptotic) of thermoradiotherapy. Materials and Methods: Liver cancer cell line (HepG2) was treated by 37oC, 40oC and 43oC hyperthermia degrees combined with three radiation doses (2 Gy, 4 Gy and 8 Gy) for 24, 48 and 72 hrs. Cell viability, apoptotic/necrotic cell screening, apoptotic (BAX and FasL) and antiapoptotic (BCL-2 and GRP78) genes, and pro-angiogenic mediators [vascular endothelial- (VEGF) and Platelet derived-growth factors (PDGF) ware investigated. Results: Our data showed that 40oC temperature combined with 4 Gy radiation gives a significant decrease (p<0.05) in cell viability. Maximum cytotoxicity was reported 48 hr post-treatment followed by slight restoration of cell viability after 72 hr. Compared with untreated cells, only 5% of viable cells with a high percentage of apoptotic (31%) and necrotic (63%) cells were demonstrated in 40oC/4 Gy/48 hr group. Expression of pro-apoptotic genes (BAX and FasL) were increased after hyperthermia with apparent elevation in 40oC/4 Gy/48 hr group coincides with moderate expression of antiapoptotic BCL-2 and GRP78 genes. A significant reduction (p<0.001; p<0.05) in VEGF and PDGF levels; respectively was shown at 40oC/4 Gy/48 hr group. Conclusions: This pilot study proposed 40oC mild temperature hyperthermia as a favorable hyperthermal condition with 4 Gy radiotherapy in HCC treatment. A further research has to be performed considering an application of more than one session of radiothermal therapy at 40oC/4 Gy for total abrogation of cancer cells.


Assuntos
Apoptose , Carcinoma Hepatocelular/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Hipertermia Induzida/métodos , Neoplasias Hepáticas/patologia , Radioterapia/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/terapia , Terapia Combinada , Chaperona BiP do Retículo Endoplasmático , Humanos , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/terapia , Projetos Piloto , Células Tumorais Cultivadas
18.
Environ Toxicol Pharmacol ; 71: 103207, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31234033

RESUMO

Lapatinib, one of the tyrosine kinase inhibitors (TKIs), is used to reduce epidermal growth factor family proteins overexpression. This study aims to assess the cytotoxic and genotoxic effects of lapatinib on the triple negative breast cancer cell line "MDA-MB-231". We investigated the cytotoxicity of lapatinib by MTT assay, mode of cell death using apoptosis-necrosis assay, DNA damage using micronucleus test, EGFR protein expression by immunocytochemistry, and assessed its effect on EGFR (7p11.2 locus) and TP53 (17p13 locus) genes using interphase-FISH technique. Lapatinib induced cytotoxicity on MDA-MB-231 cell line by elevating the concentration and its IC50 value was 32.5 µM after 24 h. Lapatinib increased apoptotic cells and micronuclei in binucleated cells gradually by increasing the concentration for 24 h. The EGFR protein expression was reduced by double fold that expressed in non-treated cells. Lapatinib enhanced deletion of EGFR gene signals highly significantly from the lowest concentration. Alternatively, lapatinib amplified signals of TP53 gene effectively by raising the concentration. In conclusion, lapatinib induced cytotoxic and genotoxic effects on MDA-MB-231 cell line. However, laptinib reduced the EGFR protein expression and EGFR signals, it raised the apoptotic cells and TP53 gene signals, which triggered extensive DNA damage. Therefore, lapatinib is an effective TKI in triple negative breast cancer cells as elucidated by its mode of cell death.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Dano ao DNA , Lapatinib/farmacologia , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Relação Dose-Resposta a Droga , Receptores ErbB/genética , Humanos , Concentração Inibidora 50 , Fatores de Tempo , Neoplasias de Mama Triplo Negativas , Proteína Supressora de Tumor p53/genética
19.
Photodiagnosis Photodyn Ther ; 21: 351-356, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29355735

RESUMO

Targeting cancer cells with photosensitizer (PS) excited by appropriate laser irradiation to release singlet oxygen as a photodynamic therapy (PDT) remains a challenge. This research aimed to assess the cytogenetic potential of 5-aminolevulinic acid (5-ALA) activated with laser irradiation (5-ALA/PDT) to damage the intact DNA of adenocarcinoma breast cancer cell line (MCF-7) and hepatocellular carcinoma cell line (HepG2). Cancer cells were treated with 0.5 and 1 mM 5-ALA for 4 h, the precursor of the photochemical protoporphyrin IX (PpIX), and then exposed to laser irradiation at 633 nm and 0.25 W for 4 min before incubation for 24 h. Cytotoxicity of cancer cells was assessed using trypan blue exclusion assay. Genotoxicity was recorded by micronucleus test and comet assay. Both 5-ALA and laser irradiation, separately, were nontoxic on cancer cell lines, however, 5-ALA/PDT enhanced cell death in a concentration-dependent manner. Also, 5-ALA/PDT generated high percentages of micronuclei in MCF-7 and HepG2 cell lines as recorded in binucleated cells. Similarly, the mean percentages of DNA damage and tail moment ratio were intensified extremely in cancer cell lines treated with 5-ALA/PDT rather than non-treated cells or cells treated by 5-ALA or laser irradiation separately. In conclusion, the singlet oxygen of 5-ALA targets DNA of cancer cells when activated by laser irradiation. Therefore, photodynamic therapy is an applicable process to damage DNA effectively during M-phase and prohibit cancer cells proliferation.


Assuntos
Ácido Aminolevulínico/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Protoporfirinas/biossíntese , Adenocarcinoma/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Dano ao DNA , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Células MCF-7 , Oxigênio Singlete
20.
J Photochem Photobiol B ; 164: 21-29, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27636008

RESUMO

BACKGROUND: The photothermal properties of gold nanoparticles (GNPs) are promising therapeutic modality for cancer. The study objective is to evaluate the therapeutic effect of the prepared PEGylated gold nano-semicubes (PEG-GNSCs) in skin cancer. The synthesized PEG-GNSCs were intermediate between cubic and rod shapes (low aspect ratio- rods). METHODS: In vitro toxicity was investigated in human skin melanoma Sk-Mel-28 cells, and skin squamous cell carcinoma was induced in CD1 mice by dimethylbenzanthracene (DMBA) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA). RESULTS: The calculated IC50 in Sk-Mel-28 cells was 3.41µg/ml of PEG-GNSCs, in presence of laser exposure. Photothermal therapy using laser-stimulated PEG-GNSCs resulted in inhibited volume of skin tumors. Our findings indicated that the inflammatory mediators, nitric oxide and cycloxygenase-2, were inhibited in mice after being treated with low and high doses of PEG-GNSCs, accompanied with laser exposure. However, the tumor necrosis factor -α was markedly elevated, while there was no change in 5-lipoxygenase. The pro-angiogenic factor vascular endothelial growth factor was inhibited, while histone acetylation and apoptosis were induced in tumor-bearing groups, after being treated with laser-stimulated PEG-GNSCs. CONCLUSION: The present study indicated the promising photothermal therapeutic effect of laser-stimulated PEG-GNSCs as an effective modality to inhibit the tumor growth, the angiogenesis and partially the inflammation.


Assuntos
Carcinógenos/toxicidade , Ouro/química , Nanopartículas Metálicas/uso terapêutico , Fototerapia , Polietilenoglicóis/química , Neoplasias Cutâneas/terapia , Animais , Camundongos , Microscopia Eletrônica de Transmissão , Neoplasias Cutâneas/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...